

GRAVITE Support for NOAA-20 VIIRS SDR Reprocessing

Wayne McCullough wayne.mccullough@noaa.gov
DPES Sustainment Team

Overview

- Background
 - GRAVITE
 - PGEs
 - ADL
- Request
 - NOAA 20 VIIRS had unexpected conditions after launch
 - SDR team wanted to reprocess with new LUTs
- Process
 - Strong user interaction
- Results
 - First run
 - Second run
- Conclusion

GRAVITE IPS

- GRAVITE has a lot of data
 - 112 Million Files, 91 Million unique granules (SNPP and NOAA-20)
 - All RDRs since launch, 34 day rolling storage of other XDRs
 - 560 TB of data
- GRAVITE has available resources
 - Computer
 - Workstations (at GSFC L40)
 - ICF Servers: dedicated to remote access and compute tasks
 - PGE Servers: dedicated to automated processing
 - All servers have direct access to data
 - 1.1 PB of dedicated disk space for operational system
 - Tools
 - IDL, Matlab, Python, Redmine, PGEs, etc.
 - Support
 - Operators, Developers, Engineers, etc.
- It is there for the JPSS Cal-Val & Data Quality community to use

GRAVITE PGES

- What is a PGE?
 - Product Generation Executable
 - Any code we automatically run against data for time periods
 - E.g., Run this analysis every hour when the data is available, etc.
- Initially used heavily for ground comparison
- Broader use now:
 - Instrument DQ Checks
 - Static plot generation
 - Data Preview Tile sets
 - Granulated Ancillary generation (uses ADL)
 - Reprocessing

GRAVITE PGES

Conditions for running a PGE:

- Have rules defining the time periods (Execution Blocks)
 - Hourly, daily, etc.
 - Orbit
 - Custom lookup
- Define input products
 - Input products may be optional or required.
 - A minimum number or maximum time gap may be set.
 - A geo-spatial area may be set.
 - E.g. "If I have full coverage for VIIRS M7, the cloud mask, and the GEOs, run xxx for this hour"
- Automatically run PGE when conditions are met
 - Queue task
 - Execute code on available node
- Selected Outputs are archived by GRAVITE

ADL Architecture

- Simplified reflection of IDPS architecture:
 - Processing Subsystem (PRO)
 - Data Management Subsystem (DMS)
 - No Ingest Subsystem (ING), No Data Delivery Subsystem (DDS),
 No Infrastructure Subsystem (INF)
 - Some functions replaced by ADL Toolkit

Request

- STAR VIIRS SDR team needed to regenerate SDRs from RDRs
 - Unexpected conditions shortly after launch
 - New Lookup Tables needed
 - Wanted to reprocess all NOAA-20 VIIRS Science RDRs (from launch November 2017 to end of February 2018)
- February 2018 DPES and STAR VIIRS SDR team met
 - Various approaches considered
 - All centered on many runs of ADL
 - SDR team needed more time to finalize LUTs
 - DPES team needed more time to test and refine ADL calls
- Goal:

Start Processing by August 2018

Process

- DPES dedicated three computers in GRAVITE for run
 - Each machine 24 core, 256 GB RAM
 - Dell PowerEdge R430 servers, with two Intel Xeon E5-2680v3 CPUs at 2.5GHz, eight 32GB RDIMM with Advanced ECC, and two Intel Ethernet X540 DP 10GBASE-T
 - Each machine to run a max of 16 ADL processes
- Set up ADL to run in a PGE
 - STAR VIIRS SDR team provided significant support:
 - patch to ADL to turn on compression
 - Testing and reference data
 - Final LUT package for reprocessing
- Runs as part of operational PGE system
 - No impact to current PGEs, only minor configuration changes needed
 - Reprocessing PGE delivered in GRAVITE v4.4

Results

- First Run start 2018-07-05
- Finish 2018-07-17
- VIIRS SDR team noted that about 1% of outputs were missing
 - ADL was not called properly to handle A2 Granules
 - A fix was developed
- Decided to re-run everything
 - Ensure all data was correctly processed.
 - Avoid duplicates.

Results

- Second Run start 2018-08-16 19:22
- Finish 2018-08-27 19:01
- Performance: ~85 days of data processed in 11 days
 - Average time to run each hour of data: 6 hours
 - Run 48 simultaneously across three computers
 - Net: ~7.8x faster than real time
 - If needed, we could parallelize it more
- Outputs: ~42 TB of data
 - Segmented into the gvo domain. (i.e., Not ops, pop, or int)
 - DPES will keep for 1 year
 - Available for all GRAVITE users

Time to Run ADL

Conclusion

- GRAVITE can use ADL to reprocess large amounts of data
 - ADL is a complex utility
 - Requires a bit of trial an error
- GRAVITE IPS PGE system can support large reprocessing runs
 - This is the first run of this nature we have tried
 - Overall, the GRAVITE IPS system did what it is supposed to do
- DPES can support JPSS Reprocessing via ADL
 - ADL available on ICF machines
 - Talk with DPES for larger runs

Contacts

- To subscribe to DQA alerts, contact:
 - ops-gravite-dpes-jpss@lists.nasa.gov
 (Subscribers need to have a GRAVITE account)
- New GRAVITE account request, contact:
 - Erica Handleman: erica.handleman@nasa.gov
- System access issues, contact:
 - gravite.service@noaa.gov
- DQA functions, contact:
 - dqst-dpes-jpss@lists.nasa.gov
- All other issues, contact:
 - ops-gravite-dpes-jpss@lists.nasa.gov